Coarse graining of force fields for metal-organic frameworks.

نویسندگان

  • Johannes P Dürholt
  • Raimondas Galvelis
  • Rochus Schmid
چکیده

We have adapted our genetic algorithm based optimization approach, originally developed to generate force field parameters from quantum mechanic reference data, to derive a first coarse grained force field for a MOF, taking the atomistic MOF-FF as a reference. On the example of the copper paddle-wheel based HKUST-1, a maximally coarse grained model, using a single bead for each three and four coordinated vertex, was developed as a proof of concept. By adding non-bonded interactions with a modified Buckingham potential, the resulting MOF-FF-CGNB is able to predict local deformation energies of the building blocks as well as bulk properties like the tbovs.pto energy difference or elastic constants in a semi-quantitative way. As expected, the negative thermal expansion of HKUST-1 is not reproduced by the maximally coarse grained model. At the expense of atomic resolution, substantially larger systems (up to tens of nanometers in size) can be simulated with respect to structural and mechanical properties, bridging the gap to the mesoscale. As an example the deformation of the [111] surface of HKUST-1 by a "tip" could be computed without artifacts from periodic images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective force coarse-graining.

An effective force coarse-graining (EF-CG) method is presented in this paper that complements the more general multiscale coarse-graining (MS-CG) methodology. The EF-CG method determines effective pairwise forces between coarse-grained sites by averaging over the atomistic forces between the corresponding atomic groups in configurations sampled from equilibrium all-atom molecular dynamics simul...

متن کامل

Metal-organic frameworks of cobalt and nickel centers with carboxylate and pyridine functionality linkers: Thermal and physical properties; precursors for metal oxide nanoparticle preparation

This  article  provides  an  overview  on  preparation,  design,  crystal structure  and  properties  of  some  metal-organic  frameworks  of carboxylate coordination polymers mixed with pyridine-functionality linkers  prepared  in  our  laboratory.  The  article  covers  coordination polymers  in  two-  and  three-dimensional  supramolecular architectures. The reported coordination polyme...

متن کامل

Multiscale coarse-graining of ionic liquids.

A recently developed multiscale coarse-graining (MS-CG) approach for obtaining coarse-grained force fields from fully atomistic molecular dynamics simulation is applied to the challenging case of the EMIM+NO3- ionic liquid. The force-matching in the MS-CG methodology is accomplished with an explicit separation of bonded and nonbonded forces. While the nonbonded forces are adopted from this forc...

متن کامل

Recent Advances in Crystal Engineering from Nanoscience Views: A Brief Review

Crystal engineering has recently emerged as a method of choice for the design and construction of organic as well as metal-organic functional materials. Crystal engineering attempts to establish packing trends in whole families of compounds and seeks to establish connections between structure and function. The utility of crystal engineering has also been expanded to the nanoscience and the deve...

متن کامل

Dynamics in coarse-grained models for oligomer-grafted silica nanoparticles.

Coarse-grained models of poly(ethylene oxide) oligomer-grafted nanoparticles are established by matching their structural distribution functions to atomistic simulation data. Coarse-grained force fields for bulk oligomer chains show excellent transferability with respect to chain lengths and temperature, but structure and dynamics of grafted nanoparticle systems exhibit a strong dependence on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 45 10  شماره 

صفحات  -

تاریخ انتشار 2016